Oakland Park Boulevard Transit Study Update

Outline

Effort to date

- Initial Project Workshop
- Partnership
- Corridor Conditions
- Problem Statement/ Purpose and Need

On-going Initiatives

- BCT vehicles; shelters
- MPO Mobility Hubs; Livability
- SFRTA Oakland Park Boulevard Station Concept

• Microsimulation –

- Data collection
- o Project Concepts

Initial Project Workshop

3

Project Partnership

- Broward MPO
- Broward County Transit
- South Florida Regional Transportation Authority
- Florida Department of Transportation
- Memorandum of Understanding
 - Roles and responsibilities for Alternatives Analysis

Initial Project Workshop

Current Operations- Route 72

Service Hours

Weekdays	Saturdays	Sundays
5:00 AM - 12:30 AM	5:30 AM - 12:30 AM	8:00 AM - 10:00PM

Service Frequency

Weekdays	Weekends
15 – 45 minutes	30 – 60 minutes

Weekday Running Time

	Scheduled	Actual
East	67 min	69 min
West	67 min	69 min

Corridor Snapshot

Corridor Problem Statement

- Travel Time
 - Traffic Congestion/ Delays
 - Number of Stops
 - o Dwell Time
- Reliability
 - On-time Performance
- Capacity
 - Passenger Crowding

- Passenger Experience
 - Stop Location and Shelter Design
 - Pedestrian Access
 - Walk Distance for Transfers
 - Travel Information
 - Safety & Security

Purpose and Need

7

Need for Investment

To address transit service need in the corridor, specifically to:

- o Increase transit service (vehicle) capacity
- Improve bus travel times
- Enhance transit time reliability

Purpose of Proposed Action

To improve transit service in the corridor in order to:

- Serve the demand for public transportation
- Reduce reliance on auto travel
- o Address quality of life, livability and air quality concerns
- Attract new transit riders

Opportunities for Transit Enhancements

Keys To Attracting New Transit Users

- Service Identity
 - Vehicles and Station Branding
- Comfort and Convenience
 - Stop Facilities
- Travel Time Savings
- High Frequency
- Service Reliability
- Safety and Security

Shelter Enhancement Program

	Sunrise	Lauderhill	Lauderdale Lakes	Oakland Park	Wilton Manors	Fort Lauderdale	Total
Westbound	4	3	6	7	-	3	23
Eastbound	8	4	8	4	3	2	29
TOTAL	12	7	14	11	3	5	52
Construction	2010-12	2011-13	2011-13	2010-12	2010-12	2011-14	

	Sunrise	Lauderhill	Lauderdale Lakes	Oakland Park	Wilton Manors	Fort Lauderdale	Total	
Large Built- in-Place	7	6	2	-	-	-	15	
Medium Built-in- Place	-	-	3	-	-	-	3	
Medium Prefab	1	1	1	1	+	3	7	
Small Prefab	4	-	8	10	3	2	27	
TOTAL	12	7	14	11	3	5	52	

MPO Initiatives

- Mobility Hubs
 - Developed requirements/ specifications
 - Vary by location and environment
- Livability Studies
 - FAU Study recommendations
 - e.g. SR7 intersection (quadrants)

City Initiatives:

- Lauderdale Lakes
 - Streetscape Master Plan
- Oakland Park
 - FEC station options
 - o Shelter design − 6th Avenue
- Wilton Manors
 - Transit Oriented Corridor (Dixie)
 - Land use designation change

Fig 18a. Detail from the City of Lauderdale Lakes Streetscape Master Plan Draft. Plan veiw of Arterials. Source: City of Lauderdale Lakes Streetscepae Master Plan. IBI Group. October 2008. (13).

12

Potential New Tri-Rail Station - Oakland Park Blvd.

Site Location Alternatives Analysis

SFRT/

- Simulate the behavior of individual vehicles
- To predict the impact resulting from changes to traffic or from changes to the physical environment
- VISSIM
 - Assignment based on O-D
 - Ability to integrate with planning model
 - Multimodal transit, parking, pedestrians
 - Operating strategies TSP, ramp metering, signal coordination

Data Needs

	Data Need	Available?	Data Provider
	intersection layouts	yes	FDOT D4 Planning
Roadway Geometry	lane configurations	yes	FDOT D4 Planning
	bus stop locations and type	yes	FDOT D4 Planning
Transit	speed profile	no	na
	bus travel time	yes	ВСТ
	boarding and alighting counts	yes	ВСТ
Traffic	turning movement counts	limited	Broward MPO
Truffic	general traffic travel time	yes	FDOT D4 Traf Ops
Traffic Control	signal timing plans	yes	BCTED
	signal phasing plans	yes	BCTED
Others	saturation headway	no	n.a.

Data Collection

- Intersection Turning Movement Counts (all 17 intersections)
- o Bus Speed Profile (Route 72, AM/PM peak, both directions)
- Bus Boarding/Alighting Counts (all stops)
- o Saturation Headway (NW 31st Ave; SR-7; Inverrary Blvd)

Data Collection

Turning movement count example
balanced 8-9 AM Oakland Park Blvd and SR-7 turning movement count

18

Data Collection

Boarding/alighting counts sample
Eastbound Route 72 AM

Stop ID	Location	On		Off			Cabin			
		7AM	8AM	9AM	7AM	8AM	9AM	7AM	8AM	9AM
2078	W of 68	0	4	3	0	0	0	15	15	12
2079	E of 68	5	2	0	0	1	1			
2080	E of 64	4	4	4	1	4	3			
2081	E of 60	7	4	8	0	2	1			
2082	W of Inverrary/56	52	18	3	0	2	0	28	21	15
2093	E of Inverrary/56	12	10	59	0	3	7			
3493	E of 55	1	15	16	0	2	1			
2108	E of 50/52	11	5	15	5	2	9			
2110	W of 47	0	4	4	0	1	0			
2526	W of 46	0	3	1	0	0	0			
2111	E of 46	3	2	1	0	2	0			
3911	E of 43	11	3	12	17	26	29			
3085	E of SR7	29	25	45	17	9	20	38	22	33
2114	W of 36 Ter	4	4	13	1	3	4			
2115	E of 36 Ter	1	1	5	0	1	4			
2116	W of 33	4	11	1	7	2	4			
2118	W of Somerset	8	1	3	5	7	3			
5482	W of 31	4	5	1	15	10	9	36	21	30
1019	W of 30	4	4	4	12	3	7			
1020	E of 29	4	0	1	4	4	0			
1022	W of 27	7	4	8	5	9	13			
5503	E of 27	0	0	1	13	2	11	37	23	26

Data Collection

Saturation Headway

20

Network Building

21

Model Calibration

Criteria and Measures	Calibration Acceptance Targets
Hourly Flows, Model Versus Observed	
Individual Link Flows	
Within 15%, for 700 vph < Flow < 2,700 vph	> 85% of cases
Within 100 vph, for Flow < 700 vph	> 85% of cases
Within 400 vph, for Flow> 2,700 vph	> 85% of cases
Sum of all Link Flows	Within 5% of sum of all link counts
GEH Statistics < 5 for Individual Link Flows*	> 85% of cases
GEH Statistics for Sum of all Link Flows	GEH < 4 for sum of all link counts
Travel Times, Model Versus Observed	
Journey times network	
Within 15% (or 1 minute, if higher)	> 85% of cases
Visual Audits	
Individual link speeds	
Visually acceptable speed-flow relationship	To analyst's satisfaction
Bottlenecks	
Visually acceptable speed-flow relationship	To analyst's satisfaction

Transit Signal Priority

Legend

Green is Optimum Intersection for Implementation, Orange is Challenging Intersection for Implementation, Unshaded is least-suitable.

23

- Transit Signal Priority
 - × 3 highest priorities; 3 major intersections

Queue Jumper

Major Bus Stops

- Constrained by ROW
- × NW 43rd Ave, SR-7, NW 31st Ave

- TSP + Queue Jumper
 - × SR-7
 - × NW 31st Ave

26)

Next Steps

- Finalize microsimulation model
- Test alternatives
- Recommended improvements

Project workshop March 2011

- o Final Purpose & Need
- Memorandum of Understanding signed